Starch biosynthesis and intermediary metabolism in maize kernels. Quantitative analysis of metabolite flux by nuclear magnetic resonance.
نویسندگان
چکیده
The seeds of cereals represent an important sink for metabolites during the accumulation of storage products, and seeds are an essential component of human and animal nutrition. Understanding the metabolic interconversions (networks) underpinning storage product formation could provide the foundation for effective metabolic engineering of these primary nutritional sources. In this paper, we describe the use of retrobiosynthetic nuclear magnetic resonance analysis to establish the metabolic history of the glucose (Glc) units of starch in maize (Zea mays) kernels. Maize kernel cultures were grown with [U-(13)C(6)]Glc, [U-(13)C(12)]sucrose, or [1,2-(13)C(2)]acetate as supplements. After 19 d, starch was hydrolyzed, and the isotopomer composition of the resulting Glc was determined by quantitative nuclear magnetic resonance analysis. [1,2-(13)C(2)]Acetate was not incorporated into starch. [U-(13)C(6)]Glc or [U-(13)C(12)]sucrose gave similar labeling patterns of polysaccharide Glc units, which were dominated by [1,2,3-(13)C(3)]- and [4,5,6-(13)C(3)]-isotopomers, whereas the [U-(13)C(6)]-, [3,4,5,6-(13)C(4)]-, [1,2-(13)C(2)]-, [5,6-(13)C(2)], [3-(13)C(1)], and [4-(13)C(1)]-isotopomers were present at lower levels. These isotopomer compositions indicate that there is extensive recycling of Glc before its incorporation into starch, via the enzymes of glycolytic, glucogenic, and pentose phosphate pathways. The relatively high abundance of the [5,6-(13)C(2)]-isotopomer can be explained by the joint operation of glycolysis/glucogenesis and the pentose phosphate pathway.
منابع مشابه
Breakthrough Technologies Retrobiosynthetic Nuclear Magnetic Resonance Analysis of Amino Acid Biosynthesis and Intermediary Metabolism. Metabolic Flux in Developing Maize Kernels
Information on metabolic networks could provide the basis for the design of targets for metabolic engineering. To study metabolic flux in cereals, developing maize (Zea mays) kernels were grown in sterile culture on medium containing [U-C6]glucose or [1,2C2]acetate. After growth, amino acids, lipids, and sitosterol were isolated from kernels as well as from the cobs, and their C isotopomer comp...
متن کاملRetrobiosynthetic nuclear magnetic resonance analysis of amino acid biosynthesis and intermediary metabolism. Metabolic flux in developing maize kernels.
Information on metabolic networks could provide the basis for the design of targets for metabolic engineering. To study metabolic flux in cereals, developing maize (Zea mays) kernels were grown in sterile culture on medium containing [U-(13)C(6)]glucose or [1,2-(13)C(2)]acetate. After growth, amino acids, lipids, and sitosterol were isolated from kernels as well as from the cobs, and their (13)...
متن کاملSurvey of potential diagnostic metabolite markers in serum of the rat model of Alzheimer’s disease using nuclear magnatic resonance (1H-NMR) technique
Introduction: The high prevalence of Alzheimerchr('39')s disease (AD) in todaychr('39')s societies indicates an urgent need for the development of methods that will help the early diagnosis of the disease. In this study, using proton nuclear magnetic resonance spectrometry (1H-NMR) metabolomics, identification of altered and distinct metabolites in serum of the rat model of AD was performed com...
متن کاملEnhanced aldolase activity and glycolysis as short term effects of hydrogen cyanide for the release of dormancy in walnut kernels
Seed dormancy removal by cold stratification is accompanied by the development of gluconeogenic competence. Although hydrogen cyanide can stimulate the germination of many herbaceous dormant seeds and increase gluconeogenesis in long term, its short-term effects on sugar metabolism require further investigation. Accordingly, an experiment in the form of complete randomized design was carried ou...
متن کاملChloroplast-localized 6-phosphogluconate dehydrogenase is critical for maize endosperm starch accumulation
Plants have duplicate versions of the oxidative pentose phosphate pathway (oxPPP) enzymes with a subset localized to the chloroplast. The chloroplast oxPPP provides NADPH and pentose sugars for multiple metabolic pathways. This study identified two loss-of-function alleles of the Zea mays (maize) chloroplast-localized oxPPP enzyme 6-phosphogluconate dehydrogenase (6PGDH). These mutations caused...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 130 4 شماره
صفحات -
تاریخ انتشار 2002